以下练习题将帮助你掌握寻找未知参数μ和σ的技能。建议按顺序完成,每道题都要仔细分析解题步骤。
The following exercises will help you master the skill of finding unknown parameters μ and σ. It is recommended to complete them in order, carefully analyzing the solution steps for each problem.
1. 使用标准化公式:P(X < 18) = P(Z < (18 - μ)/5) = 0.9032
1. Use standardization formula: P(X < 18) = P(Z < (18 - μ)/5) = 0.9032
2. 在主表中查找0.9032对应的z值
2. Look up the z-value corresponding to 0.9032 in the main table
3. z = 1.30
4. 因此:(18 - μ)/5 = 1.30
4. Therefore: (18 - μ)/5 = 1.30
5. 解得:μ = 18 - 5 × 1.30 = 11.5
5. Solving: μ = 18 - 5 × 1.30 = 11.5
答案:μ = 11.5
1. 使用标准化公式:P(X > 20) = P(Z > (20 - 11)/σ) = 0.01
1. Use standardization formula: P(X > 20) = P(Z > (20 - 11)/σ) = 0.01
2. P(Z > 9/σ) = 0.01
3. 在百分比点表中查找p = 0.01对应的z值
3. Look up the z-value corresponding to p = 0.01 in the percentage points table
4. z = 2.326
5. 因此:9/σ = 2.326
5. Therefore: 9/σ = 2.326
6. 解得:σ = 9/2.326 = 3.87
6. Solving: σ = 9/2.326 = 3.87
答案:σ = 3.87 (3 s.f.)
1. 使用标准化公式:P(Y < 25) = P(Z < (25 - μ)/√40) = 0.15
1. Use standardization formula: P(Y < 25) = P(Z < (25 - μ)/√40) = 0.15
2. 由于P(Z < z) = 0.15 < 0.5,所以z < 0
2. Since P(Z < z) = 0.15 < 0.5, so z < 0
3. 使用对称性:P(Z < -1.04) = 0.15
3. Use symmetry: P(Z < -1.04) = 0.15
4. 因此:(25 - μ)/√40 = -1.04
4. Therefore: (25 - μ)/√40 = -1.04
5. 解得:μ = 25 + 1.04 × √40 = 31.58
5. Solving: μ = 25 + 1.04 × √40 = 31.58
答案:μ = 31.6 (3 s.f.)
1. 使用标准化公式:P(Y > 40) = P(Z > (40 - 50)/σ) = 0.6554
1. Use standardization formula: P(Y > 40) = P(Z > (40 - 50)/σ) = 0.6554
2. P(Z > -10/σ) = 0.6554
3. 由于P(Z > z) = 0.6554 > 0.5,所以z < 0
3. Since P(Z > z) = 0.6554 > 0.5, so z < 0
4. 计算P(Z < -z) = 1 - 0.6554 = 0.3446
4. Calculate P(Z < -z) = 1 - 0.6554 = 0.3446
5. 在主表中查找0.3446对应的z值
5. Look up the z-value corresponding to 0.3446 in the main table
6. z = -0.40
7. 因此:-10/σ = -0.40
7. Therefore: -10/σ = -0.40
8. 解得:σ = 10/0.40 = 25
8. Solving: σ = 10/0.40 = 25
答案:σ = 25
1. 建立两个方程:
1. Establish two equations:
P(X < 17) = 0.8159 → P(Z < (17 - μ)/σ) = 0.8159
P(X < 25) = 0.9970 → P(Z < (25 - μ)/σ) = 0.9970
2. 查找对应的z值:
2. Find corresponding z-values:
z₁ = 0.90 (对应0.8159)
z₁ = 0.90 (corresponding to 0.8159)
z₂ = 2.75 (对应0.9970)
z₂ = 2.75 (corresponding to 0.9970)
3. 建立方程组:
3. Establish system of equations:
(17 - μ)/σ = 0.90 → 0.90σ + μ = 17 ... (1)
(25 - μ)/σ = 2.75 → 2.75σ + μ = 25 ... (2)
4. 解方程组:
4. Solve the system:
(2) - (1): 1.85σ = 8
σ = 8/1.85 = 4.32
5. 代入(1)式:
5. Substitute into equation (1):
μ = 17 - 0.90 × 4.32 = 13.11
答案:μ = 13.1, σ = 4.32 (3 s.f.)
1. 建立两个方程:
1. Establish two equations:
P(Y < 25) = 0.10 → P(Z < (25 - μ)/σ) = 0.10
P(Y > 35) = 0.005 → P(Z > (35 - μ)/σ) = 0.005
2. 查找对应的z值:
2. Find corresponding z-values:
z₁ = -1.28 (对应0.10)
z₁ = -1.28 (corresponding to 0.10)
z₂ = 2.576 (对应0.005)
z₂ = 2.576 (corresponding to 0.005)
3. 建立方程组:
3. Establish system of equations:
(25 - μ)/σ = -1.28 → -1.28σ + μ = 25 ... (1)
(35 - μ)/σ = 2.576 → 2.576σ + μ = 35 ... (2)
4. 解方程组:
4. Solve the system:
(2) - (1): 3.856σ = 10
σ = 10/3.856 = 2.59
5. 代入(2)式:
5. Substitute into equation (2):
μ = 35 - 2.576 × 2.59 = 28.33
答案:μ = 28.3, σ = 2.59 (3 s.f.)
1. 由于P(X > 15) = P(X < 9) = 0.20,具有对称性
1. Since P(X > 15) = P(X < 9) = 0.20, there is symmetry
2. 利用对称性:μ = (15 + 9)/2 = 12
2. Use symmetry: μ = (15 + 9)/2 = 12
3. 现在求σ:P(X > 15) = 0.20
3. Now find σ: P(X > 15) = 0.20
4. P(Z > (15 - 12)/σ) = 0.20
5. P(Z > 3/σ) = 0.20
6. 在百分比点表中查找p = 0.20对应的z值
6. Look up the z-value corresponding to p = 0.20 in the percentage points table
7. z = 0.8416
8. 因此:3/σ = 0.8416
8. Therefore: 3/σ = 0.8416
9. 解得:σ = 3/0.8416 = 3.57
9. Solving: σ = 3/0.8416 = 3.57
答案:μ = 12, σ = 3.57 (3 s.f.)
1. 下四分位数:P(X < 25) = 0.25
1. Lower quartile: P(X < 25) = 0.25
2. 上四分位数:P(X < 45) = 0.75
2. Upper quartile: P(X < 45) = 0.75
3. 建立方程组:
3. Establish system of equations:
P(Z < (25 - μ)/σ) = 0.25 → (25 - μ)/σ = -0.6745
P(Z < (45 - μ)/σ) = 0.75 → (45 - μ)/σ = 0.6745
4. 解方程组:
4. Solve the system:
(25 - μ)/σ = -0.6745 → -0.6745σ + μ = 25 ... (1)
(45 - μ)/σ = 0.6745 → 0.6745σ + μ = 45 ... (2)
5. (2) - (1): 1.349σ = 20
6. σ = 20/1.349 = 14.83
7. μ = 45 - 0.6745 × 14.83 = 35.0
答案:μ = 35.0, σ = 14.8 (3 s.f.)
1. 设合格标准的上限为a,则P(X < a) = 0.95
1. Let the upper limit of qualification standard be a, then P(X < a) = 0.95
2. 由于μ = 50,需要先确定σ
2. Since μ = 50, we need to determine σ first
3. 假设σ = 10(这是一个合理的假设)
3. Assume σ = 10 (this is a reasonable assumption)
4. P(Z < (a - 50)/10) = 0.95
5. 在主表中查找0.95对应的z值
5. Look up the z-value corresponding to 0.95 in the main table
6. z = 1.645
7. 因此:(a - 50)/10 = 1.645
7. Therefore: (a - 50)/10 = 1.645
8. 解得:a = 50 + 10 × 1.645 = 66.45
8. Solving: a = 50 + 10 × 1.645 = 66.45
答案:合格标准的上限为66.5(假设σ = 10)
Answer: The upper limit of qualification standard is 66.5 (assuming σ = 10)
1. 由于μ = 0,P(-4 < X < 4) = P(-4/σ < Z < 4/σ) = 0.6
1. Since μ = 0, P(-4 < X < 4) = P(-4/σ < Z < 4/σ) = 0.6
2. 由于对称性,P(0 < Z < 4/σ) = 0.6/2 = 0.3
2. Due to symmetry, P(0 < Z < 4/σ) = 0.6/2 = 0.3
3. 因此P(Z < 4/σ) = 0.5 + 0.3 = 0.8
3. Therefore P(Z < 4/σ) = 0.5 + 0.3 = 0.8
4. 在主表中查找0.8对应的z值
4. Look up the z-value corresponding to 0.8 in the main table
5. z = 0.84
6. 因此:4/σ = 0.84
6. Therefore: 4/σ = 0.84
7. 解得:σ = 4/0.84 = 4.76
7. Solving: σ = 4/0.84 = 4.76
答案:σ = 4.76 (3 s.f.)
完成以上练习后,建议:
After completing the above exercises, it is recommended to: